
Summary of the MARIE Assembly Language

Terminate the program7HALT

Use the value at X as the address to jump to CJUMPI X

Jump-and-Store: Store the PC at address X and jump to X+10JNS XSubroutine

call and return

Skip the next instruction based on the condition, C:

C = 00016: skip if AC is negative (b11b10 = 002)

C = 40016: skip if the AC = 0 (b11b10 = 012)

C = 80016: skip if the AC is positive (b11b10 = 102)

8SKIPCOND C

Unconditional branch to X by loading the value of X into PC9JUMP XBranch

Output the value in AC to the display6OUTPUT

Input a value from the keyboard into AC5INPUTI/O

Store the contents of AC at address X2STORE X

Load the contents of address X into AC1LOAD XData Transfer

Put all zeros in the ACACLEAR

Add Indirect: Use the value at X as the actual address of the

data operand to add to AC

BADDI X

Subtract the contents of address X from the AC4SUBT X

Add the contents of address X to AC3ADD XArithmetic

DescriptionHex

Opcode

MnemonicType of

Instructions

MARIE

Machine-language

Instruction Format
Opcode Address (or Condition)

 15 12 11 10 0

A simple MARIE program can be written to perform the high-level language statements:

RESULT = X + Y - Z

print RESULT

 Address Label Assembly Language Machine Language

0 LOAD X 100616

1 ADD Y 300716

2 SUBT Z 400816

3 STORE RESULT 200916

4 OUTPUT 600016

5 HALT 700016

6 X, DEC 10 000A16

7 Y, DEC 20 001416

8 Z, DEC 5 000516

9 RESULT, DEC 0 000016

The lines at address 6 to 9 are assembler directives (directions to the assembler) to initialize the memory

location associated with X (address 6) to DECimal 10, the memory location associated with Y (address 7) to

20, etc. Lines at address 0 to 5 are the actual machine-language MARIE program. If the PC = 0 (program

counter), the program execution would start at address 0 which contains 100616. This instruction would be

fetched into the CPUs IR (instruction register), bits 15-12 contain the operations code of 116 would be

decoded to determine that it is a LOAD instruction. Execution of the LOAD causes the specified memory

Supplement for Assignment #7 (sections 4.8 - 4.10 of the textbook)

Supplement MARIE AL - page 1

address’s (00616 in bits 11-0) content to be loaded into the accumulator (AC) register (i.e., the value 1010

would be loaded into the AC). During the fetch-decode-execute cycle, the PC would get incremented to the

next instruction. The program instructions are executed sequentially until the HALT instruction which stops

the program.

The branch instructions, JUMP and SKIPCOND, potentially cause the PC to “jump” (i.e., alter the flow of

control in the program). These instructions are useful for implementing high-level language selection (IF,

IF-THEN-ELSE, SWITCH, etc.) and looping statements (FOR, WHILE, REPEAT, etc.). For example,

consider the following IF-THEN-ELSE statement and corresponding flow-chart:

if X < Y then

 ...

else

 ...

end if

X < Y?

then body

else body

 False

 True

HLL statement Flow chart Assembly Language

LOAD X

SUBT Y

SKIPCOND 000

JUMP ELSE

THEN,

JUMP END_IF

ELSE,

END_IF,

If X < Y is True, then the value of (X-Y) in the AC is negative. The “SKIPCOND 000” cause the JUMP

ELSE instruction to be jumped over if the AC is negative. Since the then-part code follows the JUMP ELSE

instruction, it is only executed if X < Y. After the then-part code is executed, the JUMP END_IF causes the

else-body to be skipped. If X < Y is False, then the value of (X - Y) in the AC will not be negative the

SKIPCOND 000 instruction will not jump over the JUMP ELSE instruction.

For a loop example, consider the following FOR-loop and corresponding flow-chart:

for I = 1 to 10 do

I = 1

 ...

end for

I < 10?

 for body

I = I + 1

 False

 True

HLL statement Flow chart Assembly Language

FOR_INIT, LOAD ONE

FOR_COND, LOAD I

LOAD I

SUBT TEN

SKIPCOND 800

JUMP FOR_BODY

JUMP FOR_COND

FOR_BODY,

END_FOR,

STORE I

STORE I

JUMP END_FOR

ADD ONE

Supplement for Assignment #7 (sections 4.8 - 4.10 of the textbook)

Supplement MARIE AL - page 2

If I 10 is False, then (I - 10) is positive, so the SKIPCOND 800 skips to JUMP END_FOR. Thus, dropping[
out of the FOR loop. Otherwise, the JUMP FOR_BODY is not skipped. After the for-body executes and the

loop-control variable I is incremented, the JUMP FOR_COND loops back to recheck the loop control

variable.

The simplicity of the MARIE instruction set make writing assembly-language programs difficult. So, we’ll

only write small toy programs in MARIE, and later learn to write realistic assembly-language programs in the

slightly more complex MIPS instruction set. However, the simplicity of the MARIE architecture is a huge

benefit as we turn our attention to the hardware of implementing the CPU datapath and control unit.

MARIE Registers and Buses:
The revised Figure 4.9 (below) has moved the Memory from the CPU chip and hence the internal CPU

Datapath. Thus, memory can only be accessed via the MAR (Memory-Address Register) and the MBR

(Memory-Buffer Register) which is much more realistic. This has some impact on the microoperations that

access memory. For example, fetching the instruction pointed at by the PC into the IR would require the

following microoperations:

MAR PC b

MBR M[MAR] (read from memory into the MBR instead of directly into the IR as descibed on page 199)b

IR MBR b

However, the authors seem to understand this since their microoperations to execute the Load X (on page

196) use the MBR correctly:

MAR X (X is the address part of the IR, so this should technically be MAR IR11 - 0)b b

MBR M[MAR] (read from memory into the MBR instead of directly into the AC)b

AC MBR b

Revised Figure 4.9 Datapath in MARIE

MAR

 IR

 PC

InREG

MBR

OutREG

 AC

ALU

 Memory Address

0

1

2

3

2 - 1
12

16-bits

Input

Device

Output

Device16

address

data/instr.

1

2

3

4

7

5

6

1

2

3

4

7

5

6

Supplement for Assignment #7 (sections 4.8 - 4.10 of the textbook)

Supplement MARIE AL - page 3

The text discusses the microoperations of the fetch-decode-execute machine cycle in the execution of the

“Simple Program” below that calculates RESULT = X + Y.

 Address Label Assembly Language Machine Language

100 LOAD X 110416

101 ADD Y 310516

102 STORE RESULT 210616

103 HALT 700016

104 X, DEC 35 002316

105 Y, DEC -23 FFE916

106 RESULT, DEC 0 000016

Revised Figure 4.14 (a) LOAD X (110416 in ML)

002300231041104101AC bMBRT6Execute

00231041104101MBR bM[MAR]T5Get operand

11041041104101MAR b IR[11-0]T4Decode IR[15-12]

11041001104101PC b PC + 1T3

11041001104100IR bMBRT2

1104100100MBR bM[MAR]T1

100100MAR b PCT0Fetch

100 (initial values)

ACMBRMARIRPCRTNStep #Step

Revised Figure 4.14 (b) ADD Y (310516 in ML)

000CFFE91053105102AC b AC + MBRT6Execute

0023FFE91053105102MBR bM[MAR]T5Get operand

002331051053105102MAR b IR[11-0]T4Decode IR[15-12]

002331051013105102PC b PC + 1T3

002331051013105101IR bMBRT2

002331051011104101MBR bM[MAR]T1

002300231011104101MAR b PCT0Fetch

002300231041104101 (initial values AFTER LOAD X)

ACMBRMARIRPCRTNStep #Step

Revised Figure 4.14 (c) STORE RESULT (210616 in ML)
(YOU COMPLETE THIS AS PART OF LECTURE)

T5Execute*

T4Decode IR[15-12]

T3

T2

T1

T0Fetch

000CFFE91053105102 (initial values AFTER ADD Y)

ACMBRMARIRPCRTNStep #Step

* “Get Operand” step is not necessary for STORE instructions

Supplement for Assignment #7 (sections 4.8 - 4.10 of the textbook)

Supplement MARIE AL - page 4

Advanced MARIE Assembly Language Example: Print null terminated string to output

HLL: index = 0

while str[index] != 0 do

 output str[index]

 index = index + 1

end while

000016DEC 0 / NULL CHARNULL, 1F

004416DEC 68 / D1

004C16DEC 76 / L1D

005216DEC 82 / R1C

004F16DEC 79 / O1B

005716DEC 87 / W1A

000D16DEC 13 /carriage return19

004F16DEC 79 / O18

004C16DEC 76 / L17

004C16DEC 76 / L16

004516DEC 69 / E15

004816DEC 72 / HSTR,14

001416HEX 14STR_BASE,13

000016HEX 0ADDR,12

000016DEC 0INDEX,11

000116DEC 1ONE,10

700016HALTEND_WHILE,F

900216JUMP WHILEE

201116STORE INDEXD

300B16ADD ONEC

100D16LOAD INDEXB

600016OUTPUTDO,A

900A16JUMP END_WHILE9

900A16JUMP DO8

840016SKIPCOND 4007

B01216ADDI ADDR6

A00016CLEAR5

201216STORE ADDR4

301116ADD INDEX3

101316LOAD STR_BASEWHILE,2

201116STORE INDEX1

A00016CLEAR 0
Machine LanguageAssembly LanguageLabelAddress

Supplement for Assignment #7 (sections 4.8 - 4.10 of the textbook)

Supplement MARIE AL - page 5

